Abstract
Polyether urethane (PU)-based magnetic composite materials, containing different types and concentrations of iron oxide nanostructures (Fe2O3 and Fe3O4), were prepared and investigated as a novel composite platform that could be explored in different applications, especially for the improvement of the image quality of MRI investigations. Firstly, the PU structure was synthetized by means of a polyaddition reaction and then hematite (Fe2O3) and magnetite (Fe3O4) nanoparticles were added to the PU matrices to prepare magnetic nanocomposites. The type and amount of iron oxide nanoparticles influenced its structural, morphological, mechanical, dielectric, and magnetic properties. Thus, the morphology and wettability of the PU nanocomposites surfaces presented different behaviours depending on the amount of the iron oxide nanoparticles embedded in the matrices. Mechanical, dielectric, and magnetic properties were enhanced in the composites’ samples when compared with pristine PU matrix. In addition, the investigation of in vitro cytocompatibility of prepared PU nanocomposites showed that these samples are good candidates for biomedical applications, with cell viability levels in the range of 80–90%. Considering all the investigations, we can conclude that the addition of magnetic particles introduced additional properties to the composite, which could significantly expand the functionality of the materials developed in this work.
Funder
European Regional Development Fund
Subject
Polymers and Plastics,General Chemistry
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献