Synthesis and Characterization of Nonwoven Cotton-Reinforced Cellulose Hydrogel for Wound Dressings

Author:

Ahmad Faheem,Mushtaq Bushra,Butt Faaz AhmedORCID,Zafar Muhammad SohailORCID,Ahmad SherazORCID,Afzal Ali,Nawab Yasir,Rasheed Abher,Ulker Zeynep

Abstract

Hydrogels wound dressings have enormous advantages due to their ability to absorb high wound exudate, capacity to load drugs, and provide quick pain relief. The use of hydrogels as wound dressings in their original form is a considerable challenge, as these are difficult to apply on wounds without support. Therefore, the incorporation of polymeric hydrogels with a certain substrate is an emerging field of interest. The present study fabricated cellulose hydrogel using the sol–gel technique and reinforced it with nonwoven cotton for sustainable wound dressing application. The nonwoven cotton was immersed inside the prepared solution of cellulose and heated at 50 °C for 2 h to form cellulose hydrogel–nonwoven cotton composites and characterized for a range of properties. In addition, the prepared hydrogel composite was also loaded with titania particles to attain antibacterial properties. The Fourier transform infrared spectroscopy and scanning electron microscopy confirmed the formation of cellulose hydrogel layers inside the nonwoven cotton structure. The fabricated composite hydrogels showed good moisture management and air permeability, which are essential for comfortable wound healing. The wound exudate testing revealed that the fluid absorptive capacity of cellulose hydrogel nonwoven cotton composite was improved significantly in comparison to pure nonwoven cotton. The results reveal the successful hydrogel formation, having excellent absorbing, antimicrobial, and sustainable properties.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3