Quantitative Study on Solubility Parameters and Related Thermodynamic Parameters of PVA with Different Alcoholysis Degrees

Author:

Chen Siqi,Yang Hao,Huang Kui,Ge Xiaolong,Yao Hanpeng,Tang Junxiang,Ren Junxue,Ren ShixueORCID,Ma Yanli

Abstract

In recent years, inverse gas chromatography (IGC) and molecular dynamics simulation methods have been used to characterize the solubility parameters and surface parameters of polymers, which can provide quantitative reference for the further study of the surface and interface compatibility of polymer components in the future. In this paper, the solubility parameters and surface parameters of two kinds of common alcoholysis, PVA88 and PVA99, are studied by using the IGC method. The accuracy of the solubility parameters obtained by the IGC experiment is verified by molecular dynamics simulation. On the basis of this, the influence of repeated units of polyvinyl alcohol (PVA) on solubility parameters is studied, so as to determine the appropriate chain length of the PVA for simulation verification calculation. The results show that the solubility parameters are not much different when the PVA chain length is 30 and above; the numerical trends of the solubility parameters of PVA88 and PVA99 at room temperature are the same as the results of molecular dynamics simulation; the dispersive surface energy γsd and the specific surface energy γssp are scattered with the temperature distribution and have a small dependence on temperature. On the whole, the surface energy of PVA99 with a higher alcoholysis degree is higher than that of PVA88 with a lower alcoholysis degree. The surface specific adsorption free energy (ΔGsp) indicates that both PVA88 and PVA99 are amphoteric meta-acid materials, and the acidity of PVA99 is stronger.

Funder

Natural Science Foundation of Heilongjiang Province of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3