Abstract
In recent years, inverse gas chromatography (IGC) and molecular dynamics simulation methods have been used to characterize the solubility parameters and surface parameters of polymers, which can provide quantitative reference for the further study of the surface and interface compatibility of polymer components in the future. In this paper, the solubility parameters and surface parameters of two kinds of common alcoholysis, PVA88 and PVA99, are studied by using the IGC method. The accuracy of the solubility parameters obtained by the IGC experiment is verified by molecular dynamics simulation. On the basis of this, the influence of repeated units of polyvinyl alcohol (PVA) on solubility parameters is studied, so as to determine the appropriate chain length of the PVA for simulation verification calculation. The results show that the solubility parameters are not much different when the PVA chain length is 30 and above; the numerical trends of the solubility parameters of PVA88 and PVA99 at room temperature are the same as the results of molecular dynamics simulation; the dispersive surface energy γsd and the specific surface energy γssp are scattered with the temperature distribution and have a small dependence on temperature. On the whole, the surface energy of PVA99 with a higher alcoholysis degree is higher than that of PVA88 with a lower alcoholysis degree. The surface specific adsorption free energy (ΔGsp) indicates that both PVA88 and PVA99 are amphoteric meta-acid materials, and the acidity of PVA99 is stronger.
Funder
Natural Science Foundation of Heilongjiang Province of China
Subject
Polymers and Plastics,General Chemistry
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献