Abstract
This study investigated the adsorption capacity of one material based on the treatment of fly ash with sodium hydroxide as a novel adsorbent for toxic Cu2+ ion removal from aqueous media. The adsorbent was obtained through direct activation of fly ash with 2M NaOH at 90 °C and 6 h of contact time. The adsorbent was characterized by recognized techniques for solid samples. The influence of adsorption parameters such as adsorbent dose, copper initial concentration and contact time was analyzed in order to establish the best adsorption conditions. The results revealed that the Langmuir model fitted with the copper adsorption data. The maximum copper adsorption capacity was 53.5 mg/g. The adsorption process followed the pseudo-second-order kinetic model. The results indicated that the mechanism of adsorption was chemisorption. The results also showed the copper ion removal efficiencies of the synthesized adsorbents. The proposed procedure is an innovative and economical method, which can be used for toxicity reduction by capitalizing on abundant solid waste and treatment wastewater.
Funder
Gheorghe Asachi Technical University of Iasi
Subject
Polymers and Plastics,General Chemistry
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献