Study of the Relationship between Haze Performance and Fractal Dimension in Micro-Sized Segregated Liquid Crystals Embedded in a Polymer Matrix Consisting of a Thiol-ene Prepolymer and a Multi-Functional Acrylate

Author:

Kim Ju-YongORCID,Choi Suk-WonORCID

Abstract

Micro-sized segregated liquid crystals (MSLCs) surrounded by a polymer medium can be used for haze film applications. When incident light passes through the MSLC film, the microsized particles act as light scattering centers. In this study, the results of the addition of a multi-functional acrylate to a commercial thiol-ene prepolymer system, as well as the morphology of (LC) droplets, fractal dimension (D), and the optical haze performance of the micro-sized segregated LCs formed by UV-initiated photopolymerization, are reported. With increasing fraction of the multi-functional acrylate within the host polymer matrix, the small scattering centers (LC droplets) also increase, giving rise to a large optical haze in the prepared film. The optical haze can be characterized by the D of the associated LC droplet morphology in the films. The optical haze and D exhibit a strong correlation; thus, a qualitative prediction of the optical haze is possible via geometric fractal analysis.

Funder

National Research Foundation of Korea

Korea Basic Science Institute

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3