Biodegradable PCL-b-PLA Microspheres with Nanopores Prepared via RAFT Polymerization and UV Photodegradation of Poly(Methyl Vinyl Ketone) Blocks

Author:

Kim TaeyoonORCID,Lee Sorim,Park Soo-Yong,Chung IldooORCID

Abstract

Biodegradable triblock copolymers based on poly(ε-caprolactone) (PCL) and poly(lactic acid) (PLA) were synthesized via ring-opening polymerization of L-lactide followed by reversible addition–fragmentation chain-transfer (RAFT) polymerization of poly(methyl vinyl ketone) (PMVK) as a photodegradable block, and characterized by FT-IR and 1H NMR spectroscopy for structural analyses, and by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) for their thermal properties. Porous, biodegradable PCL-b-PLA microspheres were fabricated via the oil/water (O/W) emulsion evaporation method, followed by photodegradation of PMVK blocks by UV irradiation. The macro-chain transfer agent (CTA) synthesized by reacting a carboxylic-acid-terminated CTA—S-1-dodecyl-S′-(a,a′-dimethyl-a′′-acetic acid)trithiocarbonate (DDMAT)—with a hydroxyl-terminated PCL-b-PLA block copolymer was used to synthesize well-defined triblock copolymers with methyl vinyl ketone via RAFT polymerization with controlled molecular weights and narrow polydispersity. Gel permeation chromatography traces indicated that the molecular weight of the triblock copolymer decreased with UV irradiation time because of the photodegradation of the PMVK blocks. The morphology of the microspheres before and after UV irradiation was investigated using SEM and videos of three-dimensional confocal laser microscopy, showing a change in their surface texture from smooth to rough, with high porosity owing to the photodegradation of the PMVK blocks to become porous templates.

Funder

Ministry of Trade, Industry and Energy

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3