Isoniazid—Loaded Albumin Nanoparticles: Taguchi Optimization Method

Author:

Tazhbayev YerkeblanORCID,Galiyeva AldanaORCID,Zhumagaliyeva Tolkyn,Burkeyev Meiram,Karimova Bakhytgul

Abstract

Tuberculosis is one of the dangerous infectious diseases, killing over a million people worldwide each year. The search for new dosage forms for the treatment of drug-resistant tuberculosis is an actual task. Biocompatible polymer nanoparticles, in particular bovine serum albumin (BSA), are promising drug carriers. Nanoparticle (NP) parameters such as diameter, polydispersity, bioactive substance loading, and NP yield are very important when it comes to drug transport through the bloodstream. The most well-known and widely used first-line anti-tuberculosis drug, isoniazid (INH), is being used as a drug. BSA-INH NPs were obtained by an ethanol desolvation of an aqueous protein solution in the drug presence. The peculiarity of the method is that natural components, namely urea and cysteine, are used for the stabilization of BSA-INH NPs after desolvation. The characteristics of the obtained BSA-INH NPs are significantly affected by the concentration of protein, isoniazid, urea, and cysteine in the solution. The aim of the present study is to investigate the concentration effect of the system reacting components on the parameters of the NPs that are obtained. We have chosen the concentrations of four reacting components, i.e., BSA, isoniazid, urea, and cysteine, as controlling factors and applied the Taguchi method to analyze which concentration of each component has an important effect on BSA-INH NPs characteristics.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3