Abstract
We processed a series of shape memory Eucommia rubber (ER) composites with both carbon–carbon and ionic cross-linking networks via a chemical cross-linking method. The influence of the carbon–carbon cross-linking and ion cross-linking degree of ER composites on curing, mechanical, thermal, and shape memory properties were studied by DSC, DMA, and other analytical techniques. Dicumyl peroxide (DCP) and zinc dimethacrylate (ZDMA) played a key role in preparing ER composites with a double cross-linking structure, where DCP initiated polymerization of ZDMA, and grafted ZDMA onto polymer molecular chains and cross-linked rubber molecular chains. Meanwhile, ZDMA combined with rubber macromolecules to build ionic cross-linking bonds in composites under the action of DCP and reinforced the ER composites. The result showed that the coexistence of these two cross-linking networks provide a sufficient restoring force for deformation of shape memory composites. The addition of ZDMA not only improved the mechanical properties of materials, but also significantly enhanced shape memory performance of composites. In particular, Eucommia rubber composites exhibited outstanding mechanical properties and shape memory performance when DCP content was 0.2 phr.
Funder
National Natural Science Foundation of China
Subject
Polymers and Plastics,General Chemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献