Abstract
In this paper, it is reported that a metal-free and non-conjugated polymer, MA-PEG 8000-BADGE (MP8B), exhibits an antireflective property and substrate-dependent photoluminescence (SDP). MP8B was constructed from maleic anhydride, poly(ethylene glycol) and bisphenol-A diglycidyl ether. Self-assembled nanoparticles are found in MP8B and can prospectively act as scattering centers to improve light trapping and extraction. MP8B films prepared from MP8B solutions have been characterized by photoluminescence (PL), atomic force microscopy (AFM), tunnelling electron microscope (TEM), reflectance, transmittance, and UV-Vis absorption spectrum. MP8B films can suppress light reflection and enhance light transmission. The PL spectrum of MP8B film on ITO peaks at approximately 538 nm, spanning from 450 to 660 nm at a concentration of 25 mM. Meanwhile, the effects of concentration and substrate on the PL of MP8B films are also investigated in this study. Surface roughness becomes larger with concentration. A red shift of the PL spectrum is observed as solution concentration increases. Meanwhile, aggregation-caused quenching (ACQ) is insignificant. Moreover, the PL spectra of MP8B films show a substrate-dependent phenomenon due to dielectric screening. The optical band-gap energy of MP8B is approximately 4.05 eV. It is concluded that MP8B is a promising candidate for a host material, and its film can be utilized as a multifunctional layer (i.e., antireflective and light-scattering functions) for optoelectronic applications.
Subject
Polymers and Plastics,General Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献