Molecular Dynamics Simulation of Cracking Process of Bisphenol F Epoxy Resin under High-Energy Particle Impact

Author:

Xing YunqiORCID,Chen Yuanyuan,Chi Jiakai,Zheng JingquanORCID,Zhu Wenbo,Wang Xiaoxue

Abstract

The current lead insulation of high-temperature superconductivity equipment is under the combined action of large temperature gradient field and strong electric field. Compared with a uniform temperature field, its electric field distortion is more serious, and it is easy to induce surface discharge to generate high-energy particles, destroy the insulation surface structure and accelerate insulation degradation. In this paper, the degradation reaction process of bisphenol F epoxy resin under the impact of high-energy particles, such as O3−, HO–, H3O+ and NO+, is calculated based on ReaxFF simulation. According to the different types of high-energy particles under different voltage polarities, the micro-degradation mechanism, pyrolysis degree and pyrolysis products of epoxy resin are analyzed. The results show that in addition to the chemical reaction of high-energy particles with epoxy resin, their kinetic energy will also destroy the molecular structure of the material, causing the cross-linked epoxy resin to pyrolyze, and the impact of positive particles has a more obvious impact on the pyrolysis of epoxy resin.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hebei Province,China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference25 articles.

1. Application Progresses of Molecular Simulation Methodology in the Area of High Voltage Insulation;Li;Trans. China Electrotech. Soc.,2016

2. The Influence of Morphology on the Electric Strength of Polymer Insulation

3. Modern outdoor insulation - concerns and challenges

4. Review on Modification of Epoxy Resin Doped Micro-Nano Oxide Particles;He;High Volt. Appar.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3