Elaboration of Design and Optimization Methods for a Newly Developed CFRP Sandwich-like Structure Validated by Experimental Measurements and Finite Element Analysis

Author:

Kovács GyörgyORCID

Abstract

Nowadays, the application of composite materials and light-weight structures is required in those industrial applications where the primary design aims are weight saving, high stiffness, corrosion resistance and vibration damping. The first goal of the study was to construct a new light-weight structure that utilizes the advantageous characteristics of Carbon Fiber Reinforced Plastic (CFRP) and Aluminum (Al) materials; furthermore, the properties of sandwich structures and cellular plates. Thus, the newly constructed structure has CFRP face sheets and Al stiffeners, which was manufactured in order to take experimental measurements. The second aim of the research was the elaboration of calculation methods for the middle deflection of the investigated sandwich-like structure and the stresses that occurred in the structural elements. The calculation methods were elaborated; furthermore, validated by experimental measurements and Finite Element analysis. The third main goal was the elaboration of a mass and cost optimization method for the investigated structure applying the Flexible Tolerance optimization method. During the optimization, seven design constraints were considered: total deflection; buckling of face sheets; web buckling in stiffeners; stress in face sheets; stress in stiffeners; eigenfrequency of the structure and constraints for the design variables. The main added values of the research are the elaboration of the calculation methods relating to the middle deflection and the occurred stresses; furthermore, elaboration of the optimization method. The primary aim of the optimization was the construction of the most light-weighted structure because the new light-weight sandwich-like structure can be utilized in many industrial applications, e.g., elements of vehicles (ship floors, airplane base-plate); transport containers; building constructions (building floors, bridge decks).

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference44 articles.

1. Foundations of Materials Science and Engineering;Smith,2019

2. Materials Science and Engineering: An Introduction;Callister,2018

3. A review of the present and future utilisation of FRP composites in the civil infrastructure with reference to their important in-service properties

4. An overview on fiber-reinforced composites used in the automotive industry;Todor;Ann. Fac. Eng. Huned.-Int. J. Eng.,2017

5. From innovation to market: Integrating university and industry perspectives towards commercialising research output;Ismail;Forum Sci. Oecon.,2020

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3