Green Synthesis of Silver Nanoparticles as an Effective Antibiofouling Material for Polyvinylidene Fluoride (PVDF) Ultrafiltration Membrane

Author:

Alnairat Nour,Abu Dalo MunaORCID,Abu-Zurayk RundORCID,Abu Mallouh Saida,Odeh FadwaORCID,Al Bawab AbeerORCID

Abstract

Silver nanoparticles (AgNPs) were successfully synthesized using the aqueous extract of the Paronychia argentea Lam (P. argentea) wild plant. The results showed that the conversion of Ag+ to Ag0 nanoparticles ratio reached 96.5% as determined by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES), with a negative zeta potential (ζ) of −21.3 ± 7.68 mV of AgNPs expected to improve the stability of synthesized AgNPs. AgNP antibacterial activity has been examined against Streptococcus aureus (S. aureus) and Escherichia coli (E. coli) bacteria. The minimum inhibition concentration (MIC) was 4.9 µL/mL for both E. coli and S. aureus bacteria, while the minimum bactericidal concentrations (MBC) were 19.9 µL/mL and 4.9 µL/mL for S. aureus and E. coli, respectively. The synthesized AgNPs were incorporated in ultrafiltration polyvinylidene Fluoride (PVDF) membranes and showed remarkable antibiofouling behavior against both bacterial strains. The membranes were characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), and X-ray diffraction (XRD). The contact angle and porosity of the membrane were also determined. The efficiency of the membranes regarding rejection rate was assessed using bovine serum albumin (BSA). It was found in the flux experiments that membranes BSA rejection was 99.4% and 98.7% with and without AgNPs, respectively.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3