Abstract
Hydroxide exchange membrane fuel cells (AEMFC) are clean energy conversion devices that are an attractive alternative to the more common proton exchange membrane fuel cells (PEMFCs), because they present, among others, the advantage of not using noble metals like platinum as catalysts for the oxygen reduction reaction. The interest in this technology has increased exponentially over the recent years. Unfortunately, the low durability of anion exchange membranes (AEM) in basic conditions limits their use on a large scale. We present in this review composite AEM with one-dimensional, two-dimensional and three-dimensional fillers, an approach commonly used to enhance the fuel cell performance and stability. The most important filler types, which are discussed in this review, are carbon and titanate nanotubes, graphene and graphene oxide, layered double hydroxides, silica and zirconia nanoparticles. The functionalization of the fillers is the most important key to successful property improvement. The recent progress of mechanical properties, ionic conductivity and FC performances of composite AEM is critically reviewed.
Subject
Polymers and Plastics,General Chemistry
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献