Development of a New Formulation Based on In Situ Photopolymerized Polymer for the Treatment of Spinal Cord Injury

Author:

Novais Gabrielle B.,dos Santos Stefane,Santana Robertta J. R.,Filho Rose N. P.,Cunha John L. S.,Lima Bruno S.,Araújo Adriano A. S.,Severino PatriciaORCID,Júnior Ricardo L. C. Albuquerque,Cardoso Juliana C.ORCID,Souto Eliana B.ORCID,Gomes Margarete Z.

Abstract

Spinal Cord Injury (SCI) promotes a cascade of inflammatory events that are responsible for neuronal death and glial scar formation at the site of the injury, hindering tissue neuroregeneration. Among the main approaches for the treatment of SCI, the use of biomaterials, especially gelatin methacryloyl (GelMA), has been proposed because it is biocompatible, has excellent mechanical properties, favoring cell adhesion and proliferation. In addition, it can act as a carrier of anti-inflammatory drugs, preventing the formation of glial scars. The present work presents the development and in situ application of a light-curing formulation based on GelMA containing a natural extract rich in anti-inflammatory, antioxidant and neuroprotective substances (hydroalcoholic extract of red propolis—HERP) in an experimental model of SCI in rats. The formulations were prepared and characterized by time of UV exposition, FTIR, swelling and degradation. The hydrogels containing 1 mg/mL of HERP were obtained by the exposure to UV radiation of 2 μL of the formulation for 60 s. The locomotor evaluation of the animals was performed by the scale (BBB) and demonstrated that after 3 and 7 days of the injury, the GelMA-HERP group (BBB = 5 and 7) presented greater recovery compared to the GelMA group (BBB = 4 and 5). Regarding the inflammatory process, using histomorphological techniques, there was an inflammation reduction in the groups treated with GelMA and GelMA-HERP, with decreases of cavitation in the injury site. Therefore, it is possible to conclude that the use of GelMA and GelMA-HERP hydrogel formulations is a promising strategy for the treatment of SCI when applied in situ, as soon as possible after the injury, improving the clinical and inflammatory conditions of the treated animals.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3