Obtaining and Characterizing New Types of Materials Based on Low-Density Polyethylene and Thermoplastic Starch

Author:

Stelescu Maria Daniela1,Oprea Ovidiu-Cristian23ORCID,Motelica Ludmila2ORCID,Ficai Anton23ORCID,Trusca Roxana-Doina2,Sonmez Maria1,Nituica Mihaela1,Georgescu Mihai1

Affiliation:

1. Division Leather and Footwear Research Institute, National Research & Development Institute for Textiles and Leather, 93 Ion Minulescu St., 031215 Bucharest, Romania

2. Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania

3. Academy of Romanian Scientists, 3 Ilfov St., 050044 Bucharest, Romania

Abstract

Significant interest is devoted to the development of new polymer blends by using concepts of the circular economy. Such materials have predetermined properties, are easy to recycle, ecological, and have a low carbon footprint. This research presents obtaining and characterization of polymer blends based on low-density polyethylene (LDPE) and thermoplastic starch (TPS). In the first stage, TPS was obtained through the gelatinization process, and, in the second stage, mixtures of LDPE and TPS were obtained through a melt mixing process at 150 °C for 7 min. The physical–mechanical characteristics of the samples, like hardness, elongation at break, rebound resilience, and tensile strength, were determined. The sample containing maleic anhydride grafted low-density polyethylene (LDPE-g-MA) as a compatibilizer shows improvements in elongation at break and tensile strength (by 6.59% and 40.47%, respectively) compared to the test sample. The FTIR microscopy maps show that samples containing LDPE-g-MA are more homogeneous. The SEM micrographs indicate that TPS-s is homogeneously dispersed as droplets in the LDPE matrix. From the thermal analysis, it was observed that both the degree of crystallinity and the mass loss at high temperature are influenced by the composition of the samples. The melt flow index has adequate values, indicating good processability of the samples by specific methods (such as extrusion or injection).

Funder

Ministry of Research, Innovation and Digitization, CCCDI—UEFISCDI

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3