Optimized Depilation Method and Comparative Analysis of Hair Growth Cycle in Mouse Strains

Author:

Magalhaes Joana12ORCID,Lamas Sofia3ORCID,Portinha Carlos1,Logarinho Elsa12ORCID

Affiliation:

1. Insparya Science and Clinical Institute, 4150-516 Porto, Portugal

2. Aging and Aneuploidy Group, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal

3. Animal Facility, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal

Abstract

In mice, hair growth follows a mosaic or wavy patterning. Therefore, synchronization of the hair growth cycle is required to adequately evaluate any trichogenic interventions pre-clinically. Depilation is the established method for synchronizing the growth phase of mouse hair follicles. When attempting to reproduce procedures reported in the literature, C57BL/6J mice developed severe wounds. This led us not only to optimize the procedure, but also to test the procedure in other strains, namely Sv129 and the F1 generation from C57BL/6J crossed with Sv129 (B6129F1 mixed background), for which the hair growth cycle has not been ascertained yet. Here, we describe an optimized depilation procedure, using cold wax and an extra step to protect the animal skin that minimizes injury, improving experimental conditions and animal welfare in all strains. Moreover, our results show that, although hair cycle kinetics are similar in all the analyzed strains, Sv129 and B6129F1 skins are morphologically different from C57BL/6J skin, presenting an increased number and size of hair follicles in anagen, consistent to the higher hair density observed macroscopically. Altogether, the results disclose an optimized mouse depilation method that excludes the detrimental and confounding effects of skin injury in hair growth studies and reveals the hair cycle features of other mouse strains, supporting their use in hair growth pre-clinical studies.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3