Abstract
A new type of silica hybrid material functionalized with Schiff base-propyl-thiol and propyl-thiol groups (adsorbents 1 and 2, respectively) was synthesized using a co-condensation method. The synthesized materials and their starting materials were successfully characterized using a variety of techniques such as Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), nitrogen adsorption–desorption isotherms, the Brunauer–Emmett–Teller (BET) surface area calculation method, the Barrett, Joyner, and Halenda (BJH) pore size calculation method, thermogravimetry analysis (TGA), and 1H and 13C nuclear magnetic resonance (NMR) spectra. The results indicate that the new material (adsorbent 1) has a large surface and possesses different functional groups (-SH, -OH, -C=O and –N=C). The newly synthesized hybrid materials (1 and 2) were investigated as potential adsorbents for removal of toxic heavy metals, such as Pb(II) from aqueous solutions. The adsorption results show that materials 1 and 2 have different sorption properties and were found to be effective adsorbents for Pb(II) removal from aqueous solutions. In addition, compound 1 exhibited a higher adsorption capacity for Pb(II) compared to compound 2. The results showed that the optimum pH for Pb(II) sorption was 6.5. Contact time was observed to occur after 30 min for 25 mg L−1 Pb(II) concentration and adsorbent dose of 0.4 g L−1 at 25 °C.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献