Simulation-Based Assessment of Subsurface Drip Irrigation Efficiency for Crops Grown in Raised Beds

Author:

Bohaienko Vsevolod1ORCID,Romashchenko Mykhailo2,Shatkovskyi Andrii3,Scherbatiuk Maksym3

Affiliation:

1. VM Glushkov Institute of Cybernetics of NAS of Ukraine, 03187 Kyiv, Ukraine

2. Research Sector, Kyiv Agrarian University, 03022 Kyiv, Ukraine

3. Institute of Water Problems and Land Reclamation, National Academy of Agrarian Sciences of Ukraine, 03022 Kyiv, Ukraine

Abstract

This paper considers the application of a scenario simulation technique to assess subsurface drip irrigation system efficiency while using it to irrigate crops grown under raised bed technology. For simulating purposes, we use a model based on the two-dimensional Richards equation stated in terms of water head in a curvilinear domain. Solutions to problems are obtained using a finite-difference scheme with dynamic time step change. Using the data from pressure measurements obtained while growing potatoes on sandy loess soil in production conditions, we performed a calibration of the model using the particle swarm optimization algorithm. Further, the accuracy of the model was tested and average absolute errors in the range from 3.16 to 5.29 kPa were obtained. Having a calibrated model, we performed a series of simulations with different irrigation pipeline placements determining the configuration under which water losses are minimal. The simulated configuration, under which infiltration losses were minimal, was the installation of pipelines under the raised bed at the depth of 10 cm below the soil surface. The results confirm that the applied technique can be used for decision-making support while designing subsurface drip irrigation systems combined with raised bed growing technology.

Funder

Ministry of Education and Science of Ukraine

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3