Data-Augmented Deep Learning Models for Abnormal Road Manhole Cover Detection

Author:

Zhang Dongping1,Yu Xuecheng1,Yang Li1,Quan Daying1ORCID,Mi Hongmei1,Yan Ke2

Affiliation:

1. Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, China Jiliang University, Hangzhou 310018, China

2. Department of Building, School of Design and Environment, National University of Singapore, Singapore 119077, Singapore

Abstract

Anomalous road manhole covers pose a potential risk to road safety in cities. In the development of smart cities, computer vision techniques use deep learning to automatically detect anomalous manhole covers to avoid these risks. One important problem is that a large amount of data are required to train a road anomaly manhole cover detection model. The number of anomalous manhole covers is usually small, which makes it a challenge to create training datasets quickly. To expand the dataset and improve the generalization of the model, researchers usually copy and paste samples from the original data to other data in order to achieve data augmentation. In this paper, we propose a new data augmentation method, which uses data that do not exist in the original dataset as samples to automatically select the pasting position of manhole cover samples and predict the transformation parameters via visual prior experience and perspective transformations, making it more accurately capture the actual shape of manhole covers on a road. Without using other data enhancement processes, our method raises the mean average precision (mAP) by at least 6.8 compared with the baseline model.

Funder

Key R&D projects in Zhejiang Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3