Geometry-Based Deep Learning in the Natural Sciences

Author:

Friedman Robert1ORCID

Affiliation:

1. Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA

Abstract

Nature is composed of elements at various spatial scales, ranging from the atomic to the astronomical level. In general, human sensory experience is limited to the mid-range of these spatial scales, in that the scales which represent the world of the very small or very large are generally apart from our sensory experiences. Furthermore, the complexities of Nature and its underlying elements are not tractable nor easily recognized by the traditional forms of human reasoning. Instead, the natural and mathematical sciences have emerged to model the complexities of Nature, leading to knowledge of the physical world. This level of predictiveness far exceeds any mere visual representations as naively formed in the Mind. In particular, geometry has served an outsized role in the mathematical representations of Nature, such as in the explanation of the movement of planets across the night sky. Geometry not only provides a framework for knowledge of the myriad of natural processes, but also as a mechanism for the theoretical understanding of those natural processes not yet observed, leading to visualization, abstraction, and models with insight and explanatory power. Without these tools, human experience would be limited to sensory feedback, which reflects a very small fraction of the properties of objects that exist in the natural world. As a consequence, as taught during the times of antiquity, geometry is essential for forming knowledge and differentiating opinion from true belief. It not only provides a framework for understanding astronomy, classical mechanics, and relativistic physics, but also the morphological evolution of living organisms, along with the complexities of the cognitive systems. Geometry also has a role in the information sciences, where it has explanatory power in visualizing the flow, structure, and organization of information in a system. This role further impacts the explanations of the internals of deep learning systems as developed in the fields of computer science and engineering.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference84 articles.

1. (2019). The Stanford Encyclopedia of Philosophy, Stanford University. Available online: https://plato.stanford.edu/entries/pythagoreanism.

2. The Harmony of the Spheres from Pythagoras to Voyager;Proust;Proc. Int. Astron. Union,2009

3. The Structure and Function of Ptolemy’s Physical Hypotheses of Planetary Motion;Murschel;J. Hist. Astron.,1995

4. Taton, R., and Wilson, C. (1989). Planetary Astronomy from the Renaissance to the Rise of Astrophysics, Cambridge University Press.

5. An Experiment in the History of Science: With a simple but ingenious device Galileo could obtain relatively precise time measurements;Settle;Science,1961

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3