Smoke Hazards of Tall Timber Buildings with New Products

Author:

Cheng Chi-Honn,Chow Cheuk-Lun,Yue Tsz-KitORCID,Ng Yiu-Wah,Chow Wan-KiORCID

Abstract

Timber buildings can now stand very tall using new products. As timber materials are expected to be easily ignitable, the fire hazard of timber is a concern. Charring of the timber surface would maintain structural stability, but would also be accompanied by smoke. Although treating timber products with fire retardants would delay the ignition time under low radiative heat flux, toxic combustion products and unburnt fuel would be emitted immediately upon burning. More smoke and higher toxic gas concentrations such as carbon monoxide would be given off upon burning some fire retardants under high flashover heat fluxes. Due to the fast upward movement of smoke under stack effect, spreading of toxic smoke in tall timber buildings would lead to a hazardous environment. Engineered timber consists of derivative timber products. New engineered timber products are manufactured with advanced technology and design, including cross-laminated-timber (CLT), laminated veneer lumber (LVL) and glue-laminated timber (Glulam). The fire behaviour of timber products has been studied for several decades. However, the smoke hazards of using new timber products in building construction should be monitored. The objective of this study is to inspire stakeholders in fire safety of timber buildings, inter alia smoke hazards, to use new timber products to build tall buildings.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference67 articles.

1. Timber Design Guide;Buchanan,2013

2. Case study for a high-rise residential building using cross-laminated timber;Chow;SFPE Fire Prot. Eng. Mag.,2018

3. CLT Documentation on Fire Protection http://www.clt.info/clt-documentation-on-fire-protection/

4. Engineered Wood Products as a Sustainable Construction Material: A Review https://www.intechopen.com/online-first/78315

5. Feasibility Study of Mass-Timber Cores for the UBC Tall Wood Building

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3