Artificial Intelligence Techniques for Bankruptcy Prediction of Tunisian Companies: An Application of Machine Learning and Deep Learning-Based Models

Author:

Hamdi Manel1,Mestiri Sami2ORCID,Arbi Adnène34ORCID

Affiliation:

1. International Finance Group Tunisia Lab, Faculty of Management and Economic Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia

2. Applied Economics and Simulation, Faculty of Management and Economic Sciences of Mahdia, University of Monastir, Rue Ibn Sina Hiboun, Mahdia 5111, Tunisia

3. Laboratory of Engineering Mathematics (LR01ES13), Tunisia Polytechnic School, University of Carthage, Tunis 2078, Tunisia

4. Department of Advanced Sciences and Technologies, National School of Advanced Sciences and Technologies of Borj Cedria, University of Carthage, Hammam-Chott 1164, Tunisia

Abstract

The present paper aims to compare the predictive performance of five models namely the Linear Discriminant Analysis (LDA), Logistic Regression (LR), Decision Trees (DT), Support Vector Machine (SVM) and Random Forest (RF) to forecast the bankruptcy of Tunisian companies. A Deep Neural Network (DNN) model is also applied to conduct a prediction performance comparison with other statistical and machine learning algorithms. The data used for this empirical investigation covers 25 financial ratios for a large sample of 732 Tunisian companies from 2011–2017. To interpret the prediction results, three performance measures have been employed; the accuracy percentage, the F1 score, and the Area Under Curve (AUC). In conclusion, DNN shows higher accuracy in predicting bankruptcy compared to other conventional models, whereas the random forest performs better than other machine learning and statistical methods.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ОЦІНКА ФІНАНСОВОЇ БЕЗПЕКИ ПІДПРИЄМСТВА МЕТОДАМИ МАШИННОГО НАВЧАННЯ;Цифрова економіка та економічна безпека;2024-06-24

2. The dynamic game of risk default in microcredit;Journal of Algorithms & Computational Technology;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3