Semantic Segmentation and Roof Reconstruction of Urban Buildings Based on LiDAR Point Clouds

Author:

Sun Xiaokai1ORCID,Guo Baoyun1,Li Cailin12ORCID,Sun Na1,Wang Yue1,Yao Yukai1

Affiliation:

1. School of Civil Engineering and Geomatics, Shandong University of Technology, Zibo 255000, China

2. Hubei Luojia Laboratory, Wuhan 430079, China

Abstract

In urban point cloud scenarios, due to the diversity of different feature types, it becomes a primary challenge to effectively obtain point clouds of building categories from urban point clouds. Therefore, this paper proposes the Enhanced Local Feature Aggregation Semantic Segmentation Network (ELFA-RandLA-Net) based on RandLA-Net, which enables ELFA-RandLA-Net to perceive local details more efficiently by learning geometric and semantic features of urban feature point clouds to achieve end-to-end building category point cloud acquisition. Then, after extracting a single building using clustering, this paper utilizes the RANSAC algorithm to segment the single building point cloud into planes and automatically identifies the roof point cloud planes according to the point cloud cloth simulation filtering principle. Finally, to solve the problem of building roof reconstruction failure due to the lack of roof vertical plane data, we introduce the roof vertical plane inference method to ensure the accuracy of roof topology reconstruction. The experiments on semantic segmentation and building reconstruction of Dublin data show that the IoU value of semantic segmentation of buildings for the ELFA-RandLA-Net network is improved by 9.11% compared to RandLA-Net. Meanwhile, the proposed building reconstruction method outperforms the classical PolyFit method.

Funder

Open Fund of Hubei Luojia Laboratory

Shandong Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3