Computational Fluid Dynamics Modelling and Analysis Approach for Estimating Internal Short-Circuiting in Clearwells

Author:

Shin Eunher,Ryu JewanORCID,Park Heekyung

Abstract

Disinfection is an effective microorganism inactivation method that has contributed historically to decreasing waterborne diseases. It is necessary to improve hydraulic efficiency for ensuring disinfection ability without creating disinfection by-products. However, many hydraulic efficiency indices, which are a type of black-box analyses based on residence time distribution curves, have been used to assess short-circuiting and mixing. We propose a novel index (internal short-circuiting index, ISI) and analysis approach (internal short-circuiting estimation method, ISEM) based on computational fluid dynamics (CFD) modelling for understanding the local hydrodynamics. Then, we implement ISEM to quantify the effect of the clearwell configuration with the different length-to-width and shape ratios on the hydraulic efficiency. As the hydraulic efficiency surrogated by T10/T converges to the maximum value, the ISI values at inlet and outlet reduce rapidly, and the recirculation and dead zones shrink in the channel zones. Thus, the ISI curve changes from a V shape to U shape. The ISEM demonstrates that it is applicable under various conditions and it enables engineers to design clearwells for optimizing the disinfection ability. Furthermore, the CFD model in this study can be combined with machine learning techniques in future studies to extract knowledge for reducing the computational cost.

Funder

National Research Foundation of Korea

Ministry of Science and ICT, South Korea

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference33 articles.

1. Water Quality and Treatment: A Handbook of Community Water Supplies,1990

2. Chlorine contact chamber design—A field evaluation;Marske;Water Sew. Work.,1973

3. A theoretical and hydraulic model study of a chlorine contact tank;Falconer;Proc. Inst. Civ. Eng. Part 2 Res. Theory,1986

4. Verification and application of a mathematical model for the assessment of the effect of guiding walls on the hydraulic efficiency of chlorination tanks

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3