New Stable, Explicit, Shifted-Hopscotch Algorithms for the Heat Equation

Author:

Nagy Ádám,Saleh Mahmoud,Omle IssaORCID,Kareem HumamORCID,Kovács EndreORCID

Abstract

Our goal was to find more effective numerical algorithms to solve the heat or diffusion equation. We created new five-stage algorithms by shifting the time of the odd cells in the well-known odd-even hopscotch algorithm by a half time step and applied different formulas in different stages. First, we tested 105 = 100,000 different algorithm combinations in case of small systems with random parameters, and then examined the competitiveness of the best algorithms by testing them in case of large systems against popular solvers. These tests helped us find the top five combinations, and showed that these new methods are, indeed, effective since quite accurate and reliable results were obtained in a very short time. After this, we verified these five methods by reproducing a recently found non-conventional analytical solution of the heat equation, then we demonstrated that the methods worked for nonlinear problems by solving Fisher’s equation. We analytically proved that the methods had second-order accuracy, and also showed that one of the five methods was positivity preserving and the others also had good stability properties.

Publisher

MDPI AG

Subject

Applied Mathematics,Computational Mathematics,General Engineering

Reference47 articles.

1. Numerical solution of the unsteady diffusion-convection-reaction equation based on improved spectral Galerkin method

2. Analytical Solutions of Transient Drift-Diffusion in P–N Junction Pixel Sensors;Blaj;arXiv,2017

3. Diffusion MRI : what water tells us about the brain

4. Stable explicit schemes for simulation of nonlinear moisture transfer in porous materials

5. The Imperial College Lectures in Petroleum Engineering;Zimmerman,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3