Affiliation:
1. Department of Computer Science, University of Idaho, Moscow, ID 83843, USA
Abstract
Course recommender systems play an increasingly pivotal role in the educational landscape, driving personalization and informed decision-making for students. However, these systems face significant challenges, including managing a large and dynamic decision space and addressing the cold start problem for new students. This article endeavors to provide a comprehensive review and background to fully understand recent research on course recommender systems and their impact on learning. We present a detailed summary of empirical data supporting the use of these systems in educational strategic planning. We examined case studies conducted over the previous six years (2017–2022), with a focus on 35 key studies selected from 1938 academic papers found using the CADIMA tool. This systematic literature review (SLR) assesses various recommender system methodologies used to suggest course selection tracks, aiming to determine the most effective evidence-based approach.
Funder
Saudi Arabian Cultural Mission
Subject
Artificial Intelligence,Engineering (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献