Real-Time Tracking and Detection of Cervical Cancer Precursor Cells: Leveraging SIFT Descriptors in Mobile Video Sequences for Enhanced Early Diagnosis

Author:

Alcaraz-Chavez Jesus Eduardo1ORCID,Téllez-Anguiano Adriana del Carmen1ORCID,Olivares-Rojas Juan Carlos1ORCID,Martínez-Parrales Ricardo1ORCID

Affiliation:

1. DEPI, Tecnológico Nacional de México/Instituto Tecnológico de Morelia, Av. Tecnológico No. 1500, Col. Lomas de Santiguito, Morelia 58120, Michoacán, Mexico

Abstract

Cervical cancer ranks among the leading causes of mortality in women worldwide, underscoring the critical need for early detection to ensure patient survival. While the Pap smear test is widely used, its effectiveness is hampered by the inherent subjectivity of cytological analysis, impacting its sensitivity and specificity. This study introduces an innovative methodology for detecting and tracking precursor cervical cancer cells using SIFT descriptors in video sequences captured with mobile devices. More than one hundred digital images were analyzed from Papanicolaou smears provided by the State Public Health Laboratory of Michoacán, Mexico, along with over 1800 unique examples of cervical cancer precursor cells. SIFT descriptors enabled real-time correspondence of precursor cells, yielding results demonstrating 98.34% accuracy, 98.3% precision, 98.2% recovery rate, and an F-measure of 98.05%. These methods were meticulously optimized for real-time analysis, showcasing significant potential to enhance the accuracy and efficiency of the Pap smear test in early cervical cancer detection.

Funder

National Technological Institute of Mexico

Publisher

MDPI AG

Reference32 articles.

1. World Health Organization (2024, June 11). Cervical Cancer. Available online: https://www.who.int/news-room/fact-sheets/detail/cervical-cancer.

2. (2024, June 11). Asociación Española Contra el Cáncer Epidemiología del cáNcer Cervicouterino. Available online: https://www.contraelcancer.es/es/todo-sobre-cancer/tipos-cancer/cancer-cuello-uterino-cervix/epidemiologia-evolucion.

3. Automated screening of Papanicolaou tests: A review of the literature;Thrall;Diagn. Cytopathol.,2019

4. Özbay, E., and Özbay, F.A. (2023). Interpretable pap-smear image retrieval for cervical cancer detection with rotation invariance mask generation deep hashing. Comput. Biol. Med., 154.

5. Automated screening of cervical cytology specimens;Birdsong;Hum. Pathol.,1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3