Effects of Electro-Magnetic Properties of Obstacles in Magnetic Resonant Wireless Power Transfer

Author:

Lee Ho-YeongORCID,Im Sang-HyeonORCID,Park Gwan-SooORCID

Abstract

Magnetic resonant wireless power transmission (MRWPT) is a method of transmitting power over a long distance at a specific frequency. Because this system uses an alternating magnetic field, if an object with electrical/magnetic properties is placed between the transmit and receive coils, this will have a significant impact on the power transfer. In this paper, the effect of an obstacle located between two coils on the resonance frequency and transmission power is analyzed. A wireless power transmission system with a resonant frequency of 20 kHz was designed, and ferrite, aluminum, and carbon steel were selected as obstacles with permeability or conductivity. After simulating the system with finite element analysis (FEA) with these obstacles, the results were verified through actual experiments. The results show that the permeability of the obstacle decreases the resonant frequency, and the conductivity increases the resonant frequency and greatly reduces the output power. In addition, part of reduced output could be recovered by adjusting the frequency.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Characterization of resonant coupled inductor in a wireless power transfer system;Journal of Electrical Systems and Information Technology;2024-01-24

2. A New Simple Method to Design Degaussing Coils Using Magnetic Dipoles;Journal of Marine Science and Engineering;2022-10-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3