Abstract
Magnetic resonant wireless power transmission (MRWPT) is a method of transmitting power over a long distance at a specific frequency. Because this system uses an alternating magnetic field, if an object with electrical/magnetic properties is placed between the transmit and receive coils, this will have a significant impact on the power transfer. In this paper, the effect of an obstacle located between two coils on the resonance frequency and transmission power is analyzed. A wireless power transmission system with a resonant frequency of 20 kHz was designed, and ferrite, aluminum, and carbon steel were selected as obstacles with permeability or conductivity. After simulating the system with finite element analysis (FEA) with these obstacles, the results were verified through actual experiments. The results show that the permeability of the obstacle decreases the resonant frequency, and the conductivity increases the resonant frequency and greatly reduces the output power. In addition, part of reduced output could be recovered by adjusting the frequency.
Funder
National Research Foundation of Korea
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献