Autonomous Analysis of Infrared Images for Condition Diagnosis of HV Cable Accessories

Author:

Mu Lixiao,Xu Xiaobing,Xia Zhanran,Yang Bin,Guo Haoran,Zhou Wenjun,Zhou Chengke

Abstract

Infrared thermography has been used as a key means for the identification of overheating defects in power cable accessories. At present, analysis of thermal imaging pictures relies on human visual inspections, which is time-consuming and laborious and requires engineering expertise. In order to realize intelligent, autonomous recognition of infrared images taken from electrical equipment, previous studies reported preliminary work in preprocessing of infrared images and in the extraction of key feature parameters, which were then used to train neural networks. However, the key features required manual selection, and previous reports showed no practical implementations. In this contribution, an autonomous diagnosis method, which is based on the Faster RCNN network and the Mean-Shift algorithm, is proposed. Firstly, the Faster RCNN network is trained to implement the autonomous identification and positioning of the objects to be diagnosed in the infrared images. Then, the Mean-Shift algorithm is used for image segmentation to extract the area of overheating. Next, the parameters determining the temperature of the overheating parts of cable accessories are calculated, based on which the diagnosis are then made by following the relevant cable condition assessment criteria. Case studies are carried out in the paper, and results show that the cable accessories and their overheating regions can be located and assessed at different camera angles and under various background conditions via the autonomous processing and diagnosis methods proposed in the paper.

Funder

State Grid Hubei Electric Power Company

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3