Application of an Improved Mayr-Type Arc Model in Pyro-Breakers Utilized in Superconducting Fusion Facilities

Author:

He JunORCID,Wang Ke,Li Jiangang

Abstract

Pyro-breaker, a fast-responding, highly reliable and explosive-driven circuit breaker, is utilized in several Quench Protection Systems (QPS). The commutation process and its parameters are the main technical considerations in the process of designing a new pyro-breaker. The commutation parameters, such as the commutation time and the current change rate, are not only determined by the electrical parameters of the commutation circuit but also the arc behavior during the operation. The arc behavior is greatly affected by the structure and the driving mechanism of the Commutation Section (CS) in the pyro-breaker. The arc model was developed decades ago and the black-box arc model is considered a valid method to study arc behavior. In this paper, the Schavemaker black-box arc model, an improved Mayr-type arc model, is applied to study the commutation process of a newly designed pyro-breaker. Unlike normal circuit breakers, the arc discussed in this paper is discharged in deionized water. A parameter selection method is proposed. The practicability of the method is verified by numerical calculation in Power Systems Computer Aided Design (PSCAD) and experimentally.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3