Quantification of Demand-Supply Balancing Capacity among Prosumers and Consumers: Community Self-Sufficiency Assessment for Energy Trading

Author:

Afzalan Milad,Jazizadeh FarrokhORCID

Abstract

With the increased adoption of distributed energy resources (DERs) and renewables, such as solar panels at the building level, consumers turn into prosumers with generation capability to supply their on-site demand. The temporal complementarity between supply and demand at the building level provides opportunities for energy exchange between prosumers and consumers towards community-level self-sufficiency. Investigating different aspects of community-level energy exchange in cyber and physical layers has received attention in recent years with the increase in renewables adoption. In this study, we have presented an in-depth investigation into the impact of energy exchange through the quantification of temporal energy deficit–surplus complementarity and its associated self-sufficiency capacities by considering the impact of variations in community infrastructure configurations, variations in household energy use patterns, and the potential for user adaptation for load flexibility. To this end, we have adopted a data-driven simulation using real-world data from a case-study neighborhood consisting of ~250 residential buildings in Austin, TX with a mix of prosumers and consumers and detailed data on decentralized DERs. By accounting for the uncertainties in energy consumption patterns across households, different levels of PV and energy storage integration, and different modalities of user adaptation, various scenarios of operations were simulated. The analysis showed that with PV integration of more than 75%, energy exchange could result in self-sufficiency for the entire community during peak generation hours from 11 a.m. to 3 p.m. However, there are limited opportunities for energy exchange during later times with PV-standalone systems. As a potential solution, leveraging building-level storage or user adaptation for load shedding/shifting during the 2-h low-generation timeframe (i.e., 5–7 p.m.) was shown to increase community self-sufficiency during generation hours by 17% and 5–10%, respectively, to 83% and 71–76%.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference54 articles.

1. A Policy Framework for the 21st Century Grid: Enabling Our Secure Energy Future;Chopra,2011

2. Peer-to-Peer Trading in Electricity Networks: An Overview

3. German Renewable Energy Sources Acthttps://en.wikipedia.org/wiki/German_Renewable_Energy_Sources_Act

4. Trends 2013 in Photovoltaic Applications: Survey Report of Selected IEA Countries between 1992 and 2012;Nowak,2013

5. As Rooftop Solar Grows, What Should the Future of Net Metering Look Like?https://insideclimatenews.org/news/11062019/rooftop-solar-net-metering-rates-renewable-energy-homeowners-utility-state-law-changes-map

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3