Influence of Graphene Nano Particles and Antioxidants with Waste Cooking Oil Biodiesel and Diesel Blends on Engine Performance and Emissions

Author:

Krishnakumar SandeepORCID,Khan T. M. YunusORCID,Rajashekhar C. R.,M. Soudagar Manzoore ElahiORCID,Afzal AsifORCID,Elfasakhany Ashraf

Abstract

The main reason for the limited usage of biodiesel is it tends to oxidize when exposed to air. It is anticipated that the addition of an antioxidant along with graphene nano particle improves combustion of diesel-biodiesel blend. In the present research biodiesel made from the transesterification of waste cooking oil is used. Three synthetic antioxidants butylated hydroxytoluene (BHT), 2(3)-t-butyl-4-hydroxyanisole (BHA) and tert butylhydroquinone (TBHQ) along with 30 ppm of graphene nano particle were added at a volume fraction of 1000 ppm to diesel–biodiesel blends (B20). The performance and emission tests were performed at constant engine speed of 1500 rpm. Because of the inclusion of graphene nano particles, surface area to the volume ratio of the fuel is augmented enhancing the mixing ability and chemical responsiveness of the fuel during burning causing superior performance, combustion and emission aspects of compression ignition engine. The results revealed that there was a slight increase in brake power and brake thermal efficiency of about 0.29%, 0.585%, 0.58% and 6.22%, 3.11%, 3.31% for B20GrBHT1000, B20GrBHA1000 and B20GrTBHQ1000, respectively, compared to B20. Additionally, BSFC, HC and NOx emissions were reduced to considerable levels for the reformed fuel.

Funder

King Khalid University

Taif University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference29 articles.

1. Economy (Budget 2021), Business linehttps://www.thehindubusinessline.com/archive/

2. EPA, United States Environmental Protection Agencyhttps://www.epa.gov/environmental-economics/economics-biofuels

3. Mitigation of NO x emission by monophenolic antioxidants blended in POME biodiesel blends

4. Performance of graphene-added palm biodiesel in a diesel engine

5. Nitrogen Oxides (NOx), Why and How They Are Controlled,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3