Enhancement of Induction Motor Dynamics Using a Novel Sensorless Predictive Control Algorithm

Author:

Echeikh Hamdi,Mossa Mahmoud A.ORCID,Quynh Nguyen VuORCID,Ahmed Abdelsalam A.,Alhelou Hassan HaesORCID

Abstract

The paper introduces a novel predictive voltage control (PVC) procedure for a sensorless induction motor (IM) drive. In the constructed PVC scheme, the direct and quadrature (d-q) components of applied voltages are primarily managed instead of controlling the torque and flux as in the classic predictive torque control (PTC) technique. The theoretical basis of the designed PVC is presented and explained in detail, starting from the used cost-function with its relevant components. A comprehensive performance comparison is established between the two controllers, from which the superiorities of the designed PVC over the PTC approach can be easily investigated through the reduced ripples, reduced computation time, and faster dynamics. To sustain the system’s reliability, a combined Luenberger–sliding mode observer (L-SMO) is designed and verified for different operating speeds for the two controllers. The Luenberger component is concerned with estimating the stator current, rotor flux, and rotor speed. Meanwhile, the sliding mode term is used to ensure the system’s robustness against any disturbance. The verification of PVC’s validity is outlined through performing a performance analysis using the Matlab/Simulink software. The results illustrate that the IM dynamic is significantly improved when considering the constructed PVC compared with the IM dynamics under the PTC. In addition, the designed L-SMO observer has effectively proved its ability to achieve definite parameters and variable estimation.

Funder

Lac Hong University, Vietnam

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3