Thermodynamic Performance Investigation of a Small-Scale Solar Compression-Assisted Multi-Ejector Indoor Air Conditioning System for Hot Climate Conditions

Author:

Eveloy ValerieORCID,Alkendi Yusra

Abstract

In year-round hot climatic conditions, conventional air conditioning systems consume significant amounts of electricity primarily generated by conventional power plants. A compression-assisted, multi-ejector space cooling system driven by low-grade solar thermal energy is investigated in terms of energy and exergy performance, using a real gas property-based ejector model for a 36 kW-scale air conditioning application, exposed to annually high outdoor temperatures (i.e., up to 42 °C), for four working fluids (R11, R141b, R245fa, R600a). Using R245fa, the multi-ejector system effectively triples the operating condenser temperature range of a single ejector system to cover the range of annual outdoor conditions, while compression boosting reduces the generator heat input requirement and improves the overall refrigeration coefficient of performance (COP) by factors of ~3–8 at medium- to high-bound condenser temperatures, relative to simple ejector cycles. The system solar fraction varies from ~0.2 to 0.9 in summer and winter, respectively, with annual average mechanical and overall COPs of 24.5 and 0.21, respectively. Exergy destruction primarily takes place in the ejector assembly, but ejector exergy efficiency improves with compression boosting. The system could reduce annual electric cooling loads by over 40% compared with a conventional local split air conditioner, with corresponding savings in electricity expenditure and GHG emissions.

Funder

Khalifa University of Science, Technology and Research

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3