A User-Friendly Protocol for Mandibular Segmentation of CBCT Images for Superimposition and Internal Structure Analysis

Author:

Li ChenshuangORCID,Lin Leanne,Zheng ZhongORCID,Chung Chun-Hsi

Abstract

Background: Since cone-beam computed tomography (CBCT) technology has been widely adopted in orthodontics, multiple attempts have been made to devise techniques for mandibular segmentation and 3D superimposition. Unfortunately, as the software utilized in these methods are not specifically designed for orthodontics, complex procedures are often necessary to analyze each case. Thus, this study aimed to establish an orthodontist-friendly protocol for segmenting the mandible from CBCT images that maintains access to the internal anatomic structures. Methods: The “sculpting tool” in the Dolphin 3D Imaging software was used for segmentation. The segmented mandible images were saved as STL files for volume matching in the 3D Slicer to validate the repeatability of the current protocol and were exported as DICOM files for internal structure analysis and voxel-based superimposition. Results: The mandibles of all tested CBCT datasets were successfully segmented. The volume matching analysis showed high consistency between two independent segmentations for each mandible. The intraclass correlation coefficient (ICC) analysis on 20 additional CBCT mandibular segmentations further demonstrated the high consistency of the current protocol. Moreover, all of the anatomical structures for superimposition identified by the American Board of Orthodontics were found in the voxel-based superimposition, demonstrating the ability to conduct precise internal structure analyses with the segmented images. Conclusion: An efficient and precise protocol to segment the mandible while retaining access to the internal structures was developed on the basis of CBCT images.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3