An Edge-Sense Bidirectional Pyramid Network for Stereo Matching of VHR Remote Sensing Images

Author:

Tao RongshuORCID,Xiang YumingORCID,You Hongjian

Abstract

As an essential step in 3D reconstruction, stereo matching still faces unignorable problems due to the high resolution and complex structures of remote sensing images. Especially in occluded areas of tall buildings and textureless areas of waters and woods, precise disparity estimation has become a difficult but important task. In this paper, we develop a novel edge-sense bidirectional pyramid stereo matching network to solve the aforementioned problems. The cost volume is constructed from negative to positive disparities since the disparity range in remote sensing images varies greatly and traditional deep learning networks only work well for positive disparities. Then, the occlusion-aware maps based on the forward-backward consistency assumption are applied to reduce the influence of the occluded area. Moreover, we design an edge-sense smoothness loss to improve the performance of textureless areas while maintaining the main structure. The proposed network is compared with two baselines. The experimental results show that our proposed method outperforms two methods, DenseMapNet and PSMNet, in terms of averaged endpoint error (EPE) and the fraction of erroneous pixels (D1), and the improvements in occluded and textureless areas are significant.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference22 articles.

1. Stereo Processing by Semiglobal Matching and Mutual Information

2. Inclusion of a second-order prior into semi-global matching;Hermann,2009

3. A performance study on different stereo matching costs using airborne image sequences and satellite images;Zhu,2011

4. Stereo matching by training a convolutional neural network to compare image patches;Žbontar;J. Mach. Learn. Res.,2016

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3