Using Hyperspectral Imagery to Detect an Invasive Fungal Pathogen and Symptom Severity in Pinus strobiformis Seedlings of Different Genotypes

Author:

Haagsma MarjaORCID,Page Gerald F. M.ORCID,Johnson Jeremy S.ORCID,Still ChristopherORCID,Waring Kristen M.,Sniezko Richard A.ORCID,Selker John S.

Abstract

Finding trees that are resistant to pathogens is key in preparing for current and future disease threats such as the invasive white pine blister rust. In this study, we analyzed the potential of using hyperspectral imaging to find and diagnose the degree of infection of the non-native white pine blister rust in southwestern white pine seedlings from different seed-source families. A support vector machine was able to automatically detect infection with a classification accuracy of 87% (κ = 0.75) over 16 image collection dates. Hyperspectral imaging only missed 4% of infected seedlings that were impacted in terms of vigor according to expert’s assessments. Classification accuracy per family was highly correlated with mortality rate within a family. Moreover, classifying seedlings into a ‘growth vigor’ grouping used to identify the degree of impact of the disease was possible with 79.7% (κ = 0.69) accuracy. We ranked hyperspectral features for their importance in both classification tasks using the following features: 84 vegetation indices, simple ratios, normalized difference indices, and first derivatives. The most informative features were identified using a ‘new search algorithm’ that combines both the p-value of a 2-sample t-test and the Bhattacharyya distance. We ranked the normalized photochemical reflectance index (PRIn) first for infection detection. This index also had the highest classification accuracy (83.6%). Indices such as PRIn use only a small subset of the reflectance bands. This could be used for future developments of less expensive and more data-parsimonious multispectral cameras.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3