Linkages between Rainfed Cereal Production and Agricultural Drought through Remote Sensing Indices and a Land Data Assimilation System: A Case Study in Morocco

Author:

Bouras El houssaine,Jarlan LionelORCID,Er-Raki SalahORCID,Albergel ClémentORCID,Richard Bastien,Balaghi Riad,Khabba SaïdORCID

Abstract

In Morocco, cereal production shows high interannual variability due to uncertain rainfall and recurrent drought periods. Considering the socioeconomic importance of cereal for the country, there is a serious need to characterize the impact of drought on cereal yields. In this study, drought is assessed through (1) indices derived from remote sensing data (the vegetation condition index (VCI), temperature condition index (TCI), vegetation health ind ex (VHI), soil moisture condition index (SMCI) and soil water index for different soil layers (SWI)) and (2) key land surface variables (Land Area Index (LAI), soil moisture (SM) at different depths, soil evaporation and plant transpiration) from a Land Data Assimilation System (LDAS) over 2000–2017. A lagged correlation analysis was conducted to assess the relationships between the drought indices and cereal yield at monthly time scales. The VCI and LAI around the heading stage (March-April) are highly linked to yield for all provinces (R = 0.94 for the Khemisset province), while a high link for TCI occurs during the development stage in January-February (R = 0.83 for the Beni Mellal province). Interestingly, indices related to soil moisture in the superficial soil layer are correlated with yield earlier in the season around the emergence stage (December). The results demonstrate the clear added value of using an LDAS compared with using a remote sensing product alone, particularly concerning the soil moisture in the root-zone, considered a key variable for yield production, that is not directly observable from space. The time scale of integration is also discussed. By integrating the indices on the main phenological stages of wheat using a dynamic threshold approach instead of the monthly time scale, the correlation between indices and yield increased by up to 14%. In addition, the contributions of VCI and TCI to VHI were optimized by using yield anomalies as proxies for drought. This study opens perspectives for the development of drought early warning systems in Morocco and over North Africa, as well as for seasonal crop yield forecasting.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3