Spectrum- and RGB-D-Based Image Fusion for the Prediction of Nitrogen Accumulation in Wheat

Author:

Xu KeORCID,Zhang Jingchao,Li Huaimin,Cao Weixing,Zhu YanORCID,Jiang Xiaoping,Ni Jun

Abstract

The accurate estimation of nitrogen accumulation is of great significance to nitrogen fertilizer management in wheat production. To overcome the shortcomings of spectral technology, which ignores the anisotropy of canopy structure when predicting the nitrogen accumulation in wheat, resulting in low accuracy and unstable prediction results, we propose a method for predicting wheat nitrogen accumulation based on the fusion of spectral and canopy structure features. After depth images are repaired using a hole-filling algorithm, RGB images and depth images are fused through IHS transformation, and textural features of the fused images are then extracted in order to express the three-dimensional structural information of the canopy. The fused images contain depth information of the canopy, which breaks through the limitation of extracting canopy structure features from a two-dimensional image. By comparing the experimental results of multiple regression analyses and BP neural networks, we found that the characteristics of the canopy structure effectively compensated for the model prediction of nitrogen accumulation based only on spectral characteristics. Our prediction model displayed better accuracy and stability, with prediction accuracy values (R2) based on BP neural network for the leaf layer nitrogen accumulation (LNA) and shoot nitrogen accumulation (SNA) during a full growth period of 0.74 and 0.73, respectively, and corresponding relative root mean square errors (RRMSEs) of 40.13% and 35.73%.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3