A Novel Post-Doppler Parametric Adaptive Matched Filter for Airborne Multichannel Radar

Author:

Song ChongORCID,Wang BingnanORCID,Xiang Maosheng,Wang Zhongbin,Xu Weidi,Sun XiaofanORCID

Abstract

The post-Doppler adaptive matched filter (PD-AMF) with constant false alarm rate (CFAR) property was developed for adaptive detection of moving targets, which is a standardized version of the post-Doppler space–time adaptive processing (PD-STAP) in practical applications. However, its detection performance is severely constrained by the training data, especially in a dense signal environment. Improper training data and contamination of moving target signals remarkably degrade the performance of disturbance suppression and result in target cancellation by self-whitening. To address these issues, a novel post-Doppler parametric adaptive matched filter (PD-PAMF) detector is proposed in the range-Doppler domain. Specifically, the detector is introduced via the post-Doppler matched filter (PD-MF) and the lower-diagonal-upper (LDU) decomposition of the disturbance covariance matrix, and the disturbance signals of the spatial sequence are modelled as an auto-regressive (AR) process for filtering. The purpose of detecting ground moving targets as well as for estimating their geographical positions and line-of-sight velocities is achieved when the disturbance is suppressed. The PD-PAMF is able to reach higher performances by using only a smaller training data size. More importantly, it is tolerant to moving target signals contained in the training data. The PD-PAMF also has a lower computational complexity. Numerical results are presented to demonstrate the effectiveness of the proposed detector.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference39 articles.

1. Theory of Adaptive Radar

2. Rapid Convergence Rate in Adaptive Arrays

3. An Adaptive Detection Algorithm

4. A CFAR adaptive matched filter detector;Fuhrmann;IEEE Trans. Aerosp. Electron. Syst.,1992

5. Space-Time Adaptive Processing for Airborne Radar;Ward,1998

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3