Abstract
In this paper, we study the effect of the vertical distribution of aerosols on the inversion process to obtain microphysical properties of aerosols. The GRASP code is used to retrieve the aerosol size distribution from two different schemes. Firstly, only sun/sky photometer measurements of aerosol optical depth and sky radiances are used as input to the retrieval code, and then, both this information and the range-corrected signals from an advanced lidar system are provided to the code. Measurements taken at the Madrid EARLINET station, complemented with those from the nearby AERONET station, have been analyzed for the 2016–2019 time range. The effect found of the measured vertical profile on the inversion is a shift to smaller radius of the fine mode with average differences of 0.05 ± 0.02 µm, without noticeable effects for the coarse mode radius. This coarse mode is sometimes split into two modes, related to large AOD or elevated aerosol-rich layers. The first scheme´s retrieved size distributions are also compared with those provided by AERONET, observing the unusual persistence of a large mode centered at 5 µm. These changes in the size distributions affect slightly the radiative forcing calculated also by the GRASP code. A stronger forcing, dependent on the AOD, is observed in the second scheme. The shift in the fine mode and the effect on the radiative forcing indicate the importance of considering the vertical profile of aerosols on the retrieval of microphysical properties by remote sensing.
Subject
General Earth and Planetary Sciences
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献