Field-Scale Characterization of Spatio-Temporal Variability of Soil Salinity in Three Dimensions

Author:

Li HongyiORCID,Liu XinluORCID,Hu BifengORCID,Biswas AsimORCID,Jiang Qingsong,Liu Weiyang,Wang Nan,Peng Jie

Abstract

Information on spatial, temporal, and depth variability of soil salinity at field and landscape scales is important for a variety of agronomic and environment concerns including irrigation in arid and semi-arid areas. However, challenges remain in characterizing and monitoring soil secondary salinity as it can largely be impacted by managements including irrigation and mulching in addition to natural factors. The objective of this study is to evaluate apparent electrical conductivity (ECa)-directed soil sampling as a basis for monitoring management-induced spatio-temporal change in soil salinity in three dimensions. A field experiment was conducted on an 18-ha saline-sodic field from Alar’s Agricultural Science and Technology Park, China between March, and November 2018. Soil ECa was measured using an electromagnetic induction (EMI) sensor for four times over the growing season and soil core samples were collected from 18 locations (each time) selected using EMI survey data as a-priori information. A multi-variate regression-based predictive relationship between ECa and laboratory-measured electrical conductivity (ECe) was used to predict EC with confidence (R2 between 0.82 and 0.99). A three-dimensional inverse distance weighing (3D-IDW) interpolation clearly showed a strong variability in space and time and with depths within the study field which were mainly attributed to the human management factors including irrigation, mulching, and uncovering of soils and natural factors including air temperature, evaporation, and groundwater level. This study lays a foundation of characterizing secondary salinity at a field scale for precision and sustainable management of agricultural lands in arid and semi-arid areas.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference64 articles.

1. Present Scenario of Global Salt Affected Soils, its Management and Importance of Salinity Research;Hossain;Int. Res. J. Biol. Sci.,2019

2. The global technical and economic potential of bioenergy from salt-affected soils

3. Salt Affected Soils at a Global Scale and Concepts for Control;Massoud,1981

4. What are saline soils and what happens when they are drained?;Fitzpatrick;J. Austral. Assoc. Nat. Res. Manag.,2000

5. Review of soil salinity assessment for agriculture across multiple scales using proximal and/or remote sensors;Corwin;Adv. Agron.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3