Validation of Copernicus Sea Level Altimetry Products in the Baltic Sea and Estonian Lakes

Author:

Liibusk AiveORCID,Kall TarmoORCID,Rikka Sander,Uiboupin RivoORCID,Suursaar ÜloORCID,Tseng Kuo-HsinORCID

Abstract

Multi-mission satellite altimetry (e.g., ERS, Envisat, TOPEX/Poseidon, Jason) data have enabled a synoptic-scale view of ocean variations in past decades. Since 2016, the Sentinel-3 mission has provided better spatial and temporal sampling compared to its predecessors. The Sentinel-3 Ku/C Radar Altimeter (SRAL) is one of the synthetic aperture radar altimeters (SAR Altimeter) which is more precise for coastal and lake observations. The article studies the performance of the Sentinel-3 Level-2 sea level altimetry products in the coastal areas of the Baltic Sea and on two lakes of Estonia. The Sentinel-3 data were compared with (i) collocated Global Navigation Satellite System (GNSS) ship measurements, (ii) the Estonian geoid model (EST-GEOID2017) together with sea-level anomaly corrections from the tide gauges, and (iii) collocated buoy measurements. The comparisons were carried out along seven Sentinel-3A/B tracks across the Baltic Sea and Estonian lakes in 2019. In addition, the Copernicus Marine Environment Monitoring Service (CMEMS) Level-3 sea-level products and the Nucleus for European Modelling of the Ocean (NEMO) reanalysis outcomes were compared with measurements from Estonia’s 21 tide gauges and the buoy deployed offshore. Our results showed that the uncertainty of the Sentinel-3 Level-2 altimetry product was below decimetre level for the seacoast and the selected lakes of Estonia. Results from CMEMS Level-3 altimetry products showed a correlation of 0.83 (RMSE 0.18 m) and 0.91 (RMSE 0.27 m) when compared against the tide gauge measurements and the NEMO model, respectively. The overall performance of the altimetry products was very good, except in the immediate vicinity of the coastline and for the lakes, where the accuracy was nearly three times lower than for the open sea, but still acceptably good.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3