Multilevel Structure Extraction-Based Multi-Sensor Data Fusion

Author:

Duan PuhongORCID,Kang XudongORCID,Ghamisi PedramORCID,Liu Yu

Abstract

Multi-sensor data on the same area provide complementary information, which is helpful for improving the discrimination capability of classifiers. In this work, a novel multilevel structure extraction method is proposed to fuse multi-sensor data. This method is comprised of three steps: First, multilevel structure extraction is constructed by cascading morphological profiles and structure features, and is utilized to extract spatial information from multiple original images. Then, a low-rank model is adopted to integrate the extracted spatial information. Finally, a spectral classifier is employed to calculate class probabilities, and a maximum posteriori estimation model is used to decide the final labels. Experiments tested on three datasets including rural and urban scenes validate that the proposed approach can produce promising performance with regard to both subjective and objective qualities.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spectral-Spatial Graph Convolutional Network for Hyperspectral and SAR Data Fusion;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07

2. Global Contextual Learning Network for Multisource Remote Sensing Image Fusion;2024 2nd International Conference on Pattern Recognition, Machine Vision and Intelligent Algorithms (PRMVIA);2024-05-24

3. NCGLF2: Network combining global and local features for fusion of multisource remote sensing data;Information Fusion;2024-04

4. Effect of sensors locations and magnitudes of dynamic loads on dynamical properties in structural health monitoring;Procedia Structural Integrity;2024

5. Learning Local and Global Feature Representation for Hyperspectral and LiDAR Data Fusion;2023 11th International Conference on Information Systems and Computing Technology (ISCTech);2023-07-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3