Predicting Frost Depth of Soils in South Korea Using Machine Learning Techniques

Author:

Choi Hyun-JunORCID,Kim Sewon,Kim YoungSeok,Won Jongmuk

Abstract

Predicting the frost depth of soils in pavement design is critical to the sustainability of the pavement because of its mechanical vulnerability to frozen-thawed soil. The reliable prediction of frost depth can be challenging due to the high uncertainty of frost depth and the unavailability of geotechnical properties needed to use the available empirical- and analytical-based equations in literature. Therefore, this study proposed a new framework to predict the frost depth of soil below the pavement using eight machine learning (ML) algorithms (five single ML algorithms and three ensemble learning algorithms) without geotechnical properties. Among eight ML models, the hyperparameter-tuned gradient boosting model showed the best performance with the coefficient of determination (R2) = 0.919. Furthermore, it was also shown that the developed ML model can be utilized in the prediction of several levels of frost depth and assessing the sensitivity of pavement-related predictors for predicting the frost depth of soils.

Funder

Korea Agency for Infrastructure Technology Advancement

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3