Impulsive Pinning Control of Discrete-Time Complex Networks with Time-Varying Connections

Author:

Ríos-Rivera DanielORCID,Rios Jorge D.ORCID,Sanchez Oscar D.,Alanis Alma Y.ORCID

Abstract

Complex dynamical networks with time-varying connections have characteristics that allow a better representation of real-world complex systems, especially interest in their not static behavior and topology. Their applications reach areas such as communication systems, electrical systems, medicine, robotic, and more. Both continuous and discrete-time complex dynamical networks and the pinning control technique have been studied. However, even with interest in the research on complex networks combining characteristics of discrete-time, time-varying connections, pinning control, and impulsive control, there are few studies reported in the literature. There are some previous studies dealing with impulsively pin-controlling a discrete-time complex network. Nevertheless, they neglect to deal with time-varying connections; they deal with these systems by experimentally using continuous-time methods or linearizing the node dynamics. In this manner, this paper presents a control scheme that not only deals with pin control on discrete-time complex networks but also includes time-varying connections. This paper proposes an impulsive pin control to a zero state using passivity degrees considering a discrete-time complex network with undirected, linear, and diffusive couplings. Additionally, a corresponding mathematical analysis, which allows the representation of the dynamics as a set of symmetric matrices, is presented. With this, certain kinds of time-varying connections can be integrated into the analysis. Moreover, a particular criterion for selecting nodes to pin is also presented. The behavior of the controller for the non-varying and time-varying coupling cases is shown via numeric simulations.

Funder

CONACYT Mexico

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference32 articles.

1. Chen, G., Wang, X., and Li, X. Fundamentals of Complex Networks: Models, Structures and Dynamics, 2015.

2. The Structure and Function of Complex Networks;Newman;SIAM Rev.,2003

3. Newman, M., Barabási, A., and Watts, D.J. Structure and Dynamics of Networks, 2006.

4. Complex Networks: Structure and Dynamics;Boccaletti;Phys. Rep.,2006

5. Khalil, H. Nonlinear Systems, 2002.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3