Abstract
This paper deals with the question of achieving a suitable extension of the notion of Suzuki-type contraction to the framework of quasi-metric spaces, which allows us to obtain reasonable fixed point theorems in the quasi-metric context. This question has no an easy answer; in fact, we here present an example of a self map of Smyth complete quasi-metric space (a very strong kind of quasi-metric completeness) that fulfills a simple and natural contraction of Suzuki-type but does not have fixed points. Despite it, we implement an approach to obtain two fixed point results, whose validity is supported with several examples. Finally, we present a general method to construct non-T1 quasi-metric spaces in such a way that it is possible to systematically generate non-Banach contractions which are of Suzuki-type. Thus, we can apply our results to deduce the existence and uniqueness of solution for some kinds of functional equations which is exemplified with a distinguished case.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Reference43 articles.
1. Quasi-uniformities: Reconciling domains with metric spaces;Smyth,1988
2. Totally bounded spaces and compact ordered spaces as domains of computation;Smyth,1991
3. Partial Metric Topology
4. The Smyth Completion
5. QUASI-METRICS AND THE SEMANTICS OF LOGIC PROGRAMS
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献