Thermal and Phase Change Process in a Locally Curved Open Channel Equipped with PCM-PB and Heater during Nanofluid Convection under Magnetic Field

Author:

Aich Walid,Selimefendigil Fatih,Alqahtani TalalORCID,Algarni SalemORCID,Alshehery SultanORCID,Kolsi LiouaORCID

Abstract

Thermal performance and phase-change dynamics in a channel having a cavity equipped with a heater and phase-change material (PCM)-packed bed (PB) region are analyzed during nanoliquid convection under an inclined magnetic field. Curvature of the upper wall above the PCM zone is also considered by using the finite element method. Impacts of curvature of the upper wall (between 0.01H and 0.6H, H-channel height), strength of magnetic field (MGF) (Hartmann number between 0 and 40), height (between 0.1H and 0.4H) and number (between 5 and 17) of heaters on the thermal performance and phase-change dynamics are studied. In the interior and wall near regions of the PCM-PB, the curvature effects become opposite, while phase completion time (tF) rises by about 42% at the highest radius of the curvature. Imposing MGF and increasing its strength has positive impacts on the phase change and thermal performance. There is a reduction in tF by about 45.2% and 41.8% when MGF is imposed at Ha = 40 for pure fluids and nanofluids. When thermal performance for all different cases is compared, using MGF+nanofluid+PCM provides the most favorable case. When the reference case (only pure fluid without MGF and PCM) is used, including nanoparticles results in an improvement of 33.7%m while it is further increased to 71.1% when PCM-PB is also installed. The most favorable case by using MGF, nanofluid and PCM-PB results in thermal performance improvement of about 373.9% as compared to the reference configuration.

Funder

Scientific Research Deanship, King Khalid University, Abha, Kingdom of Saudi Arabia

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3