Local Closure under Infinitely Divisible Distribution Roots and Esscher Transform

Author:

Cui Zhaolei,Wang Yuebao,Xu Hui

Abstract

In this paper, we show that the local distribution class Lloc∩OSloc is not closed under infinitely divisible distribution roots, i.e., there is an infinitely divisible distribution which belongs to the class, while the corresponding Lévy distribution does not. Conversely, we give a condition, under which, if an infinitely divisible distribution belongs to the class Lloc∩OSloc, then so does the Lévy distribution. Furthermore, we find some sufficient conditions that are more concise and intuitive. Using different methods, we also give a corresponding result for another local distribution class, which is larger than the above class. To prove the above results, we study the local closure under random convolution roots. In particular, we obtain a result on the local closure under the convolution root. In these studies, the Esscher transform of distribution plays a key role, which clarifies the relationship between these local distribution classes and related global distribution classes.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference39 articles.

1. Feller, W. An Introduction to Probability Theory and Its Applications, 1971.

2. Subexponentiality and infinite divisibility;Embrechts;Z. Wahrscheinlichkeitstheorie Verw. Gibiet.,1979

3. Sato, K. Lévy processes and infinitely divisible distributions. Cambridge Studies in Advanced Mathematics, 1999.

4. Borovkov, A.A., and Borovkov, K.A. Asymptotic Analysis of Random Walks, 2008.

5. Asymptotics for sums of random variables with local subexponential behavior;Asmussen;J. Theor. Probab.,2003

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Closure under infinitely divisible distribution roots and the Embrechts–Goldie conjecture;Lithuanian Mathematical Journal;2024-01

2. Convolution-Root Closure;Closure Properties for Heavy-Tailed and Related Distributions;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3