Closed-Form Solutions to a Forced Damped Rotational Pendulum Oscillator

Author:

Salas Alvaro H.,Abu Hammad Ma’mon,Alotaibi Badriah M.,El-Sherif Lamiaa S.,El-Tantawy Samir A.ORCID

Abstract

In this investigation, some analytical solutions to both conserved and non-conserved rotational pendulum systems are reported. The exact solution to the conserved oscillator (unforced, undamped rotational pendulum oscillator), is derived in the form of a Jacobi elliptical function. Moreover, an approximate solution for the conserved case is obtained in the form of a trigonometric function. A comparison between both exact and approximate solutions to the conserved oscillator is examined. Moreover, the analytical approximations to the non-conserved oscillators including the unforced, damped rotational pendulum oscillator and forced, damped rotational pendulum oscillator are obtained. Furthermore, all mentioned oscillators (conserved and non-conserved oscillators) are linearized, and their exact solutions are derived. In addition, all obtained approximations are compared with the four-order Runge–Kutta (RK4) numerical approximations and with the exact solutions to the linearized oscillators. The obtained results can help several authors for discussing and interpreting their results.

Funder

Princess Nourah bint Abdulrahman University Researchers Supporting Project

Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3